• home
  • about
  • 全ての投稿
  • ソフトウェア・ハードウェアの設定のまとめ
  • 分析関連のまとめ
  • ヘルスケア関連のまとめ
  • 生涯学習関連のまとめ

xgbfir

date: 2018-07-30 excerpt:

tag: xgbfir


xgbfirで解釈性を与える

一般的なfscoreにかんして、gainと同一にならないことがあり、gainとfscoreがバラけるときには、gainをもちいたほうがいい

xgbfir

xgboostのモデルに対して適応可能

解釈性を与える

from sklearn.datasets import load_iris, load_boston
import xgboost as xgb
import xgbfir
# loading database
boston = load_boston()
# doing all the XGBoost magic
xgb_rmodel = xgb.XGBRegressor().fit(boston['data'], boston['target'])
# saving to file with proper feature names
xgbfir.saveXgbFI(xgb_rmodel, feature_names=boston.feature_names, OutputXlsxFile='bostonFI.xlsx')
# loading database
iris = load_iris()
# doing all the XGBoost magic
xgb_cmodel = xgb.XGBClassifier().fit(iris['data'], iris['target'])
# saving to file with proper feature names
xgbfir.saveXgbFI(xgb_cmodel, feature_names=iris.feature_names, OutputXlsxFile='irisFI.xlsx')


xgbfir Share Tweet