
Google Confidential and Proprietary

Sibyl: A system for large scale supervised
machine learning

Kevin Canini, Tushar Chandra, Eugene Ie, Jim McFadden, Ken Goldman, Mike Gunter,
Jeremiah Harmsen, Kristen LeFevre, Dmitry Lepikhin, Tomas Lloret Llinares, Indraneel
Mukherjee, Fernando Pereira, Josh Redstone, Tal Shaked, Yoram Singer

Google Confidential and Proprietary

Goal
● Users respond differently to different information

in different contexts
● Learn model of what information gets the best

user response in different contexts
● ... use model do decide what to present

Google Confidential and Proprietary

Uses of machine learning
● Improve relevance
● Improve site monetization
● Reduce spam
● Improve advertiser return on investment
● ... etc ...

Google Confidential and Proprietary

Problem scale

● 100M views per day (or more)
● Businesses worth $100M (or more)

Google Confidential and Proprietary

Problem scope

● There are many such problems at Google
○ Search, YouTube, Gmail, Android, G+, etc
○ Relevance, monetization, spam, etc

● ML typically generates 10+% improvements
=> This is becoming an industry "best practice"

● 1% improvement is a big deal, e.g.:
○ Improves relevance for millions of users
○ Millions of dollars of revenue

=> accuracy is important

Google Confidential and Proprietary

Analysis tools

Machine learning architecture

Server

Impression log

Interaction log

... etc ...

User

Databases
Databases

Databases

"Joined" logs Machine learning
system

Machine learned model

Google Confidential and Proprietary

Sibyl spec
● 100s of TB of joined logs (uncompressed)
● 100s of billions of training examples
● 100 billion unique features, 10s or 100s per example

=> Must train accurate models
(should be able to train 100s of models Google-wide)

=> Need highly parallel algos that converge quickly
 (Algos should leverage Google's scalable infrastructure)

Google Confidential and Proprietary

Results overview
Built principled large scale supervised ML system
● Using theoretically sound algorithms
● To solve internet scale problems
● Using reasonable resources
● For multiple loss functions and regularizations

Used techniques that are well known to the systems community
● MapReduce for scalability
● Multiple cores and threads per computer for efficiency
● Google File System (GFS) to store lots of data
● An integerized column-oriented data format for compression &

performance

Google Confidential and Proprietary

Parallel Boosting Algorithm
(Collins, Schapire, Singer 2001)

• Iterative algorithm, each iteration improves model
• Number of iterations to get within of the optimum:

• Updates correlated with gradients, but not a gradient
algorithm
• Self-tuned step size, large when instances are sparse

Google Confidential and Proprietary

Parallel Boosting Algorithm
(Collins, Schapire, Singer 2001)

Google Confidential and Proprietary

Parallel Boosting Algorithm
(Collins, Schapire, Singer 2001)

Google Confidential and Proprietary

Properties of parallel
boosting
Embarrassingly parallel:
1. Computes feature correlations for each example in parallel
2. Feature are updated in parallel

We need to “shuffle” the outputs of Step 1 for Step 2

Step size inversely proportional to number of active features per example
● Not total number of features
● Good for sparse training data

Extensions
● Add regularization
● Support other loss functions

Google Confidential and Proprietary

A brief introduction to
MapReduce
Programming model for processing large data sets
● Proven model and implementation

Instances1

Instances2

Instancesn

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

Features1

Features2

Featuresm-1

Featuresm

Google Confidential and Proprietary

Implementing parallel
boosting
+ Embarrassingly parallel
+ Stateless, so robust to transient data errors
+ Each model is consistent, sequence of models for debugging

- 10-50 iterations to converge

Google Confidential and Proprietary

Some observations
We typically train multiple models

• To explore different types of features
• Don’t read unnecessary features

• To explore different levels of regularization
• Amortize fixed costs across similar models

• Computers have lots of RAM
• Store the model and training stats in RAM at each worker

• Computers have lots of cores
• Design for multi-core

• Training data is highly compressible

Google Confidential and Proprietary

Instead of a row-oriented data
store ...

Field1:value1,1 Field2:value2,1 Field3:value3,1

Field1:value1,2 Field2:value2,2 Field3:value3,2

Field1:value1,n Field2:value2,n Field3:value3,n

Field1:value1,x Field2:value2,x Field3:value3,x

...
File1

File2

Google Confidential and Proprietary

Design principle: use column-
oriented data store

Field1:value1,1 Field2:value2,1 Field3:value3,1

Field1:value1,2 Field2:value2,2 Field3:value3,2

Field1:value1,n Field2:value2,n Field3:value3,n

Field1:value1,x Field2:value2,x Field3:value3,x

...

File1 File2 File3

Google Confidential and Proprietary

Design principle: use column-
oriented data store
Column for each field
Each learner only reads relevant columns

Benefits
• Learners read much less data
• Efficient to transform fields
• Data compresses better

Google Confidential and Proprietary

Design principle: use model
sets
• Train multiple similar models together
• Benefit: amortize fixed costs across models

• Cost of reading training data
• Cost of transforming data

• Downsides
• Need more RAM
• Shuffle more data

Google Confidential and Proprietary

Design principle: “Integerize”
features
• Each column has its own dense integer space
• Encode features in decreasing order of frequency
• Variable-length encoding of integers
• Benefits:

• Training data compression
• Store in-memory model and statistics as arrays rather
than hash tables

• Compact, faster

Google Confidential and Proprietary

Design principle: store model
and stats in RAM
• Each worker keeps in RAM

• A copy of the previous model
• Learning statistics for its training data

• Boosting requires O(10 bytes) per feature
• Possible to handle billions of features

Google Confidential and Proprietary

Design principle: optimize for
multi-core
• Share model across cores
• MapReduce optimizations

• Multi-shard combiners
• Share training statistics across cores

Google Confidential and Proprietary

Training data

Product Examples Compressed
Raw data

Training
data

Compression Features
per example

bytes per
feature

A 59.9B 9.98TB 2.00TB 4.99x 54.9 0.67

B 7.6B 2.67TB 0.71TB 3.78x 94.9 1.07

C 197.5B 66.66TB 15.54TB 4.29x 77.7 1.11

D 129.1B 61.93TB 17.24TB 3.59x 100.57 1.46

Google Confidential and Proprietary

Processing throughput

Product Examples Features per
example

Processing
cores

Iteration time
(secs)

Number of
models

#features per
sec per core

A 59.9B 26.59 195 2471 1 3.3M

B 7.6B 27.18 290 599 2 2.4M

C 197.5B 35.09 700 4523 1 2.2M

D 129.1B 54.61 970 3150 1 2.3M

Google Confidential and Proprietary

Concurrency

Number of cores Time per iteration (secs) Cost per iteration (core x secs)

4 cores x 10 machines 15000 60000

8 cores x 10 machines 7500 60000

12 cores x 10 machines 4500 54000

16 cores x 10 machines 3900 62400

Google Confidential and Proprietary

Impact of L1

Product Number of
features

Number of non-zero
features

Fraction of non-zero
features

A 868M 20.1M 2.31%

B 333M 7.9M 2.37%

C 1762M 251.8M 14.29%

D 2172M 371.6M 17.11%

Google Confidential and Proprietary

Other Sibyl features
● Multiple loss functions
● Sophisticated regularization scheme
● Template exploration
● Dynamic stepping for faster convergence
● Online setting

Google Confidential and Proprietary

Lesson learnt (future direction):
Focus on ease of use
● Cleanly integrated machine learning pipeline

○ Log joining, training, serving, analysis

● Tools for analyzing TB of data

● Incorporate best practices
○ e.g., catch training/serving skew

● Incorporate other machine learning methods
○ e.g, unsupervised learning

