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Goal
● Users respond differently to different information 

in different contexts
● Learn model of what information gets the best 

user response in different contexts 
● ... use model do decide what to present
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Uses of machine learning
● Improve relevance
● Improve site monetization
● Reduce spam
● Improve advertiser return on investment
● ... etc ...
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Problem scale

● 100M views per day (or more)
● Businesses worth $100M (or more)
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Problem scope

● There are many such problems at Google
○ Search, YouTube, Gmail, Android, G+, etc
○ Relevance, monetization, spam, etc

● ML typically generates 10+% improvements
=> This is becoming an industry "best practice"

● 1% improvement is a big deal, e.g.:
○ Improves relevance for millions of users
○ Millions of dollars of revenue

=> accuracy is important



Google Confidential and Proprietary

Analysis tools

Machine learning architecture

Server

Impression log

Interaction log

... etc ...
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Sibyl spec
● 100s of TB of joined logs (uncompressed)
● 100s of billions of training examples
● 100 billion unique features, 10s or 100s per example

=> Must train accurate models
(should be able to train 100s of models Google-wide)

=> Need highly parallel algos that converge quickly
     (Algos should leverage Google's scalable infrastructure)
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Results overview
Built principled large scale supervised ML system
● Using theoretically sound algorithms
● To solve internet scale problems
● Using reasonable resources
● For multiple loss functions and regularizations

Used techniques that are well known to the systems community
● MapReduce for scalability
● Multiple cores and threads per computer for efficiency
● Google File System (GFS) to store lots of data
● An integerized column-oriented data format for compression & 

performance
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Parallel Boosting Algorithm
(Collins, Schapire, Singer 2001)

• Iterative algorithm, each iteration improves model
• Number of iterations to get within   of the optimum:

• Updates correlated with gradients, but not a gradient 
algorithm
• Self-tuned step size, large when instances are sparse
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Parallel Boosting Algorithm
(Collins, Schapire, Singer 2001)
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Parallel Boosting Algorithm
(Collins, Schapire, Singer 2001)
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Properties of parallel 
boosting
Embarrassingly parallel:
1. Computes feature correlations for each example in parallel
2. Feature are updated in parallel

We need to “shuffle” the outputs of Step 1 for Step 2

Step size inversely proportional to number of active features per example
● Not total number of features
● Good for sparse training data

Extensions
● Add regularization
● Support other loss functions
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A brief introduction to 
MapReduce
Programming model for processing large data sets
● Proven model and implementation
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Implementing parallel 
boosting
+ Embarrassingly parallel
+ Stateless, so robust to transient data errors
+ Each model is consistent, sequence of models for debugging

- 10-50 iterations to converge
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Some observations
We typically train multiple models

• To explore different types of features
• Don’t read unnecessary features

• To explore different levels of regularization
• Amortize fixed costs across similar models

• Computers have lots of RAM
• Store the model and training stats in RAM at each worker

• Computers have lots of cores
• Design for multi-core

• Training data is highly compressible



Google Confidential and Proprietary

Instead of a row-oriented data 
store ...

Field1:value1,1 Field2:value2,1 Field3:value3,1

Field1:value1,2 Field2:value2,2 Field3:value3,2

Field1:value1,n Field2:value2,n Field3:value3,n

Field1:value1,x Field2:value2,x Field3:value3,x

...
File1

File2
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Design principle: use column-
oriented data store

Field1:value1,1 Field2:value2,1 Field3:value3,1

Field1:value1,2 Field2:value2,2 Field3:value3,2

Field1:value1,n Field2:value2,n Field3:value3,n

Field1:value1,x Field2:value2,x Field3:value3,x

...

File1 File2 File3
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Design principle: use column-
oriented data store
Column for each field
Each learner only reads relevant columns

Benefits
• Learners read much less data
• Efficient to transform fields
• Data compresses better
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Design principle: use model 
sets
• Train multiple similar models together
• Benefit: amortize fixed costs across models

• Cost of reading training data
• Cost of transforming data

• Downsides
• Need more RAM
• Shuffle more data
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Design principle: “Integerize” 
features
• Each column has its own dense integer space
• Encode features in decreasing order of frequency
• Variable-length encoding of integers
• Benefits:

• Training data compression
• Store in-memory model and statistics as arrays rather 
than hash tables

• Compact, faster
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Design principle: store model 
and stats in RAM
• Each worker keeps in RAM

• A copy of the previous model
• Learning statistics for its training data

• Boosting requires O(10 bytes) per feature
• Possible to handle billions of features
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Design principle: optimize for 
multi-core
• Share model across cores
• MapReduce optimizations

• Multi-shard combiners
• Share training statistics across cores



Google Confidential and Proprietary

Training data

Product Examples Compressed
Raw data

Training 
data

Compression Features
per example

bytes per
feature

A 59.9B 9.98TB 2.00TB 4.99x 54.9 0.67

B 7.6B 2.67TB 0.71TB 3.78x 94.9 1.07

C 197.5B 66.66TB 15.54TB 4.29x 77.7 1.11

D 129.1B 61.93TB 17.24TB 3.59x 100.57 1.46
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Processing throughput

Product Examples Features per 
example

Processing 
cores

Iteration time 
(secs)

Number of 
models

#features per 
sec per core

A 59.9B 26.59 195 2471 1 3.3M

B 7.6B 27.18 290 599 2 2.4M

C 197.5B 35.09 700 4523 1 2.2M

D 129.1B 54.61 970 3150 1 2.3M
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Concurrency

Number of cores Time per iteration (secs) Cost per iteration (core x secs)

4 cores x 10 machines 15000 60000

8 cores x 10 machines 7500 60000

12 cores x 10 machines 4500 54000

16 cores x 10 machines 3900 62400
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Impact of L1

Product Number of 
features

Number of non-zero 
features

Fraction of non-zero 
features

A 868M 20.1M 2.31%

B 333M 7.9M 2.37%

C 1762M 251.8M 14.29%

D 2172M 371.6M 17.11%
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Other Sibyl features
● Multiple loss functions
● Sophisticated regularization scheme
● Template exploration
● Dynamic stepping for faster convergence
● Online setting
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Lesson learnt (future direction):
Focus on ease of use
● Cleanly integrated machine learning pipeline

○ Log joining, training, serving, analysis

● Tools for analyzing TB of data

● Incorporate best practices
○ e.g., catch training/serving skew

● Incorporate other machine learning methods
○ e.g, unsupervised learning


